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A MONOTONE STREAMLINE UPWIND METHOD FOR 
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SUMMARY 
A direct streamline upwind method has been developed for convection-dominated flow problems utilizing 
quadratic elements. The approach presented retains the curve-sidedness feature offered by these elements. 
This facilitates the use of boundary conforming elements in domains that possess extreme curvature such as 
turbomachinery bladed components, for which the method is particularly suited. Three test cases are solved 
to evaluate the stability and diffusive characteristics of the numerical solution. The results presented clearly 
demonstrate that the proposed method does not exhibit any non-physical spatial oscillations, nor does it 
suffer from the traditional problem of excessive numerical diffusion. 
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INTRODUCTION 

Numerical solution of the convection dominated flow problem has proved to be a difficult task. 
Central difference methods and the conventional Galerkin method, being the equivalent finite 
element counterpart, have consistently yielded unphysical oscillatory solutions.'-4 Symmetric 
treatment of the convection terms in these numerical techniques has been identified as the source 
of the numerical stability problem. This is true in the sense that second-order differencing of the 
convection terms will naturally produce a set of equations that are decoupled between adjacent 
nodes when no physical diffusion exists in the flow-governing equations. 

Physical reasoning suggests that a non-symmetric or directional treatment of the convective 
terms would be more appropriate. This is especially true for convection-dominated subsonic 
flows. Numerical algorithms using this idea have traditionally focused on weighting the convec- 
tion effects in the direction upstream of the local velocity vector. While this approach helps to 
stabilize the calculations, it simultaneously introduces unwanted numerical diffusion. The effect 
of numerical (or cross-stream) diffusion is to smear the solution in areas of high gradients of the 
flow field. A review of 19 finite difference methods by Smith and Hutton' concluded that none of 
these methods provide a satisfactory performance. Work reported after this review generally 
demonstrated that further reductions in the amount of numerical diffusion were obtained with the 
finite difference 
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Upwinding techniques, originally devised for finite difference algorithms, have been applied 
with good success to finite element methods. One such approach is known as the streamline 
upwind Petrov-Galerkin method (SU/PG).8 This method modifies the weighting functions using 
the local velocity in such a way as to secure an upstream bias of these functions. This approach 
was developed using four-noded bi-linear elements and was next applied using linear triangular 
elemenkg This technique is currently the most widely used finite element upwind 
However, it does exhibit oscillatory behaviour of varied magnitude depending upon the discretiz- 
ation pattern. The SU/PG method has recently been improved by forcing the technique to satisfy 
the maximum prin~iple,'~ with the discretization unit being the simple linear triangle elements.14 
This work clearly shows that satisfying the maximum principle will ensure the monotonic 
behaviour of the solution variable. 

Another successful streamline upwind method was reported by Rice and Schnipke.' Instead of 
modifying the weighting functions, these authors adopted a direct approach whereby the 
convection term is evaluated along the local streamline. Calculations presented by Rice and 
Schnipke showed that this method is monotonic and will introduce tolerable amounts of diffusion 
into the solution. This work was based on a simple straight-sided four-noded bi-linear finite 
element and was later extended to three-dimensional applications using conceptually the same 
element type, namely the eight-noded bi-linear finite element.I6 

The restriction of streamline upwinding to linear elements, as is currently the case, precludes 
the geometric flexibility and high-order interpolation advantages which quadratic finite elements 
offer. Initial attempts to apply upwinding techniques to two-dimensional finite element algo- 
rithms were made using eight-noded quadratic elements of the so-called 'Serendipity' family and 
nine-noded Lagrangian elements. "-19 The approach was based on modifying the weighting 
functions according to the cell Peclet number and the direction of the average velocity vector. As 
perhaps should be expected, the numerical results reported showed excessive cross-stream 
diffusion. 

Another method using the nine-noded Lagrangian element was developed by Donea et aL2' 
Their method employs a generalized governing equation which is obtained by subtracting from 
the original differential equation the scalar product of its gradient by a vector of free parameters 
associated with each of the co-ordinate directions. However, the test cases presented in this study 
revealed solutions which were as oscillatory as those obtained using the Galerkin finite element 
method. 

More recently, an upwind method reported by Tabata and Fujima2' was developed for 
quadratic triangular elements. In presenting this method, the authors claimed that the method 
could approach third-order accuracy. However, examination of this method revealed that this 
upwinding methodology is not derived on an element-by-element basis. In fact, location of the 
upstream and downstream upwinding points will span across elements. The results presented did 
not allow for an objective evaluation of the stability characteristics or numerical diffusion. 
Although quadratic elements were used, all calculations were performed using straight-sided 
elements. 

This paper presents a streamline upwind method for quadratic elements whereby the advection 
terms are directly evaluated along a local streamline. The proposed method preserves the 
geometric flexibility associated with the curve-sidedness of the element by performing the 
upwinding scheme in the transformed (or local) frame of reference. Test cases will show that the 
new method yields no fictitious oscillations and that the numerical solutions possess very little 
numerical diffusion. In addition, the use of quadratic elements in the current method conceptually 
allows equal-order segregated finite element methods to use higher order interpolation for the 
pressure within the primitive-variable formulation of the Navier-Stokes equations. Solution of 
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a Poisson-type equation for pressure, in this case, will approach a third-order convergence rate," 
which is a substantially faster rate in comparison with the same algorithm using a linear element. 

ANALYSIS 

In this section, we consider the steady two-dimensional advection-diffusion equation 

where p, u, v and k are the given density, velocity components and diffusivity coefficient, respect- 
ively, with & being a general field variable. Assuming constant diffusivity, the general form of the 
finite element formulation for this equation is given by 

where A'") is the element area. The final form of the diffusion term is obtained through integration 
by parts.23 Development of the advection term follows in the next section. 

Streamline upwind formulation 

Details for the streamline upwind method are given for the eight-noded element of the 
Serendipity family (Figure 1). For pure advection problems, Galerkin's method of weighted 
residuals yields 
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where Wi are the weighting functions. In streamline co-ordinates, this equation assumes the 
following form: 

(4) 

where us is the velocity in the streamwise direction. On an element level, we can assume that the 
following relation~hip'~ is valid: 

(5 )  
a4 
8s 

pus -=constant. 

This will allow equation (4) to be rewritten as 

pus dA = 0. 

Evaluation of this expression requires definition of an upwind point every time a downwind point 
is detected. The process for identifying downwind nodes is straightforward. For each node, we 
need to determine if the negative of the velocity vector points back into the element. This is stated 
mathematically as 

- v j  ($at+$ a,)+ +Uj (g at+$ a,)+ 20, 

- v j  ( $ a t + &  ax au )- +uj  (:; - at+- :; a, )- 20. (7) 

The negative and positive superscripts indicate the two different sides of the element that join at 
the computational node (Figure2). Both conditions have to be met for comer nodes. For 
mid-side nodes, only the first condition has to be satisfied. 

Once a downwind node is detected the mass flow rates, defined in Figure 3, are calculated using 
Simpson's rule of integration. It should be emphasized that the quadratic variation of the velocity 
field is retained in performing the integration. As an example, to obtain the flow rates finxa and 
finxb (Figure 3), the mass flow rate along side (1-8-4) is first evaluated using quadratic shape 
functions. Then, side (8-4) is handled similarly giving rise to finxa. The difference between the two 
values provides finxb. This technique is applied to all element boundaries. 

The computed mass flow rates allow the upstream point of the streamline associated with any 
downwind node to be determined. The methodology used to locate the upstream point has been 

\ 

Figure 2. Downwind node detection notation 
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Figure 3. Definition of mass flow rates 

F p ~  I-[ FpTp13 
/ 

/ 

CASE 1 Fn-i 
CASE 2 r- j  I 

2 
I 

5 

CASE 3 

Figure 4. Upwinding stencil logic for comer nodes 

developed in a generic stencil format. This allows easy cycling through all nodes. As an example, 
the orientation of the stencil for node 3 is shown in Figure 4. This figure shows the different 
possible scenarios that could occur. In a generic format, this logic will be the same for all corner 
nodes. The pointers shown in Figure4 are evaluated using the ratios of the mass flow rates 
defined previously. The location and values of the pointers will ultimately determine all nodal 
contributions. 

A similar approach is applied for mid-side nodes. However, the stencil design for these nodes is 
slightly different (Figure 5). The choice of which stencil is used is based on the sign of the mass flux 
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Figure 5. Upwinding stencil logic for mid-side nodes 

across the fictitious internal surfaces of the element (Figure 3). For example, the stencil used for 
node 7 would be determined by the sign of the mass flux, fma. Calculation of these internal fluxes 
is also obtained by Simpson's rule of integration. 

With the upstream point located, the next step is to evaluate equation (6). The product pus is 
obtained from the values of the current downwind node. For instance, should node 3 be the 
current downwind point, the value of the streamline velocity would be 

us = J C ( U 3  + 03 13. (8) 
The value of &$/as is generally obtained by tracing the streamline within the finite element. For 
a bi-linear linite element,I5 this will result in a straight line approximation of the streamline. With 
a curve-sided element, the curvature effects are naturally included into the calculations by tracing 
the streamline in the transformed computational domain. The following approximation, which 
implies sufficiently small element dimensions, is made: 

where A 4  is the difference between the upstream and downstream scalar values. As is calculated 
using the following formula: 

AS= J[ (Ax2+ Ay')], (10) 
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Table I. Advection contributions for example case 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 00 00 00 

- Fp*Fn* A 00 A 0.0 (Fn-l)*A 00 00 (Fp-l)*A 
00 0.0 0.0 0.0 0.0 00 0.0 
0-0 0.0 0.0 0.0 00 0.0 00 

00 0.0 00 0.0 00 0.0 0.0 0.0 
00 0.0 0-0 00 0.0 0.0 0.0 0.0 
00 00 0.0 0.0 0.0 0.0 00 0.0 

which can be rewritten as 

The final step is to assemble the elemental contributions. For illustration purposes the reader is 
referred to the example in Figure 4, where node 3 is the only downwind node with the upstream 
point falling between nodes 8 and 1. Table1 shows the advection stiffness matrix that would 
result. Fp and Fn would be obtained (by reference to Figures 3 and 4) from the ratios of the mass 
fluxes. 

Fp = max {min { (foya + foyb)/(finxa + finxb), l}, 0-0} 

Fn = max {min { (foxa + foxb)/(finya + finyb), l}, 0.0) 
For this example, Fn= 1 and Fp would fall between 0-0 and 1.0. 

RESULTS 

The merit of the new upwinding technique will be appraised in this section through three test 
cases. The first case is the skewed flow field advection problem depicted in Figure 6. This type of 

Figure 6. Problem and model description for test case No. 1 
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problem is considered to be a worst case scenario for any upwinding method. With the diffusivity 
set equal to 0.0, the cell Peclet number (uL/k) approaches infinity. Typical results obtained using 
the Galerkin formulation for a uniform flow at 45" are shown in Figure 7. The numerical 
oscillations shown in this figure are more or less representative of the outcome of any method that 
equally weights the advection terms in the upstream and downstream flow directions. Poor 
performance make such methods hardly applicable to problems involving steep gradients of the 
convected field variable(s). 

A solution based on the Rice and Schnipke approach' and using a bi-linear finite element is 
shown in Figure 8 for a uniform flow of 64". The diffusion effects were virtually eliminated by 
setting the diffusivity coefficient equal to As seen in the figure, the solution predicted is 
smooth and monotonic. For the bi-linear element, the maximum error was reportedly encoun- 
tered for flow angles of 64 and 27"," while exact nodal answers were obtained for flow angles of 
0,45 and 90". 

The new upwinding scheme was tested for flow angles of 27,45 and 64". The results from these 
calculations are shown in Figures 9(a)-9(c). As seen in these figures, exact nodal results were 
obtained for each flow angle. For this test case, the maximum amount of numerical diffusion 

Figure 7. 45" flow case using the Galerkin weighted residual method 

EXACT CALCULATED 

Figure 8. 64" skewed advection case using the bi-linear element 
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EXACT 

CALCULATED 

(b) CALCULATED 

CALCULATED 

CALCULATED 

Figure 9. Skewed advection for (a) 27" flow, (b) 45" flow, (c) 64" flow and (d) 36.8" flow 
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Figure 10. Problem description for test case No. 2 
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Figure 11.  Comparison between inlet and exit profiles 

prevails at flow angles of approximately 14,36.8,53.1 and 75.9". The 36.8" flow-angle case is 
shown in Figure 9(d). These calculations illustrate the improvement in accuracy that is obtained 
when the quadratic element is used as the discretization unit. 

The second test case demonstrates the advantage of the curve-sidedness capability of the 
quadratic element. This problem was derived from the Smith and Hutton test case' and is 
described in Figure 10. The object of this test case is to assess the advection of a 'cosine profile' in 
a complete circle. The u-velocity is set equal to - y  and the u-velocity is set to x. Note that any 
smearing of the profile in this case would be indicative of fictitious dissipation. However, 
examination of the results shown in Figure 11 indicate no smearing of the initial profile. 
Furthermore, the reader is reminded that the geometry of the domain would have been signifi- 
cantly distorted had a comparable number of bi-linear elements been used instead. 

The third test case concerns the advection-diffusion of a temperature field in a rotating hollow 
shaft.24 Because of the domain symmetry, the problem can be reduced to a one-dimensional 
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Figure 12. Problem and model description for test case No. 3 

EXACT CALCULATED 

Figure 13. Calculated solution is smooth and monotonic 

equation governing the transport of temperature in the radial direction. However, selection of 
Cartesian co-ordinates forces the problem to be of the two-dimensional type. A complete 
description of the flow physics and finite element model is shown in Figure 12. The conduction 
coefficient is not constant and is assumed to be proportional to (xz + y2) -  Boundary conditions 
for temperature were taken from the exact solution and imposed on all boundaries of the domain. 
The calculated solution is compared with the exact solution in Figure 13. The surface plots 
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Figure 14. Direct comparison with exact solution for constant X location 
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Figure 15. Direct comparison with exact solution for constant Y location 

demonstrate the monotonic behaviour of the numerical solution. The accuracy of the calculation 
can be judged by comparing line plots of the non-dimensional temperature at constant values of 
x and y as shown in Figures 14 and 15. Examination of these figures reveal an excellent agreement 
with the exact solution along the P-P and Q-Q locations. 

CONCLUSIONS 

A new direct streamline upwind method has been developed for quadratic elements. The 
curve-sidedness of these elements is preserved by performing the upwind procedure in the 
transformed space. The proposed method has been shown to be accurate for a cell Peclet number 
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of infinity for both straight and curve-sided element models. Excellent agreement was also 
obtained for a test problem where the convective and diffusive transport processes were of equal 
importance. Utilization of the new upwinding method in solving convection-dominated flow 
fields in turbomachinery primary-flow passages is currently in progress. 
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